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Outline

• Airfoil shape optimization
• Robust optimization model for airfoil optimization 

over a range of flight conditions
• Reduction of mean and variance
• Profile optimization method

– Adaptive minimax approach for simultaneous and 
proportional drag reduction

– Efficient shape modification strategy

• Simulation results in transonic viscous flow
• Conclusions



Two Known Problems Associated With 
Multipoint Drag Minimization

Off-design performance 
degradation

Noisy optimal airfoil



Past Efforts on Airfoil Shape Optimization

• Smoothing of airfoil shapes during optimization 
iterations by using smoothed descent 
directions (Jameson et al)

• Using physical parameters or smooth shape 
functions (such as Hicks-Henne bump 
functions) for shape representation

• Multipoint drag minimization or multiobjective 
optimization (Drela; Nemec, Zingg, and 
Pulliam)

• Robust optimization methods to avoid off-
design performance degradation (Huyse, 
Lewis, Padula, and Li)



Robust Optimization Model
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and some geometric constraints (such as 
thickness constraints).

Consider the following multi-objective optimization
problem:

(mean,variance)  
with respect to 
Mach number M



Reduction of Mean and Variance

• Use a multi-objective optimization 
method (such as the weighted sum 
method) to find a solution. 

• However, these methods require fairly 
accurate approximations of mean and 
variance of drag.

• For aerodynamic shape optimization in 
transonic viscous flow, computation of 
drag is quite expensive. Accurate 
approximations of mean and variance 
of drag are computationally prohibitive.
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Profile Optimization Method

1) Select design Mach numbers M1, M2,…,Mr.
2) Evaluate the lift and drag, and their gradients.
3) Find an optimal trust region size for a linear 

subproblem to achieve simultaneous and 
proportional drag reduction.

4) Compute the least norm solution of the linear 
subproblem.

5) Generate a new iterate.



Choose a Trust Region and Compute 
the Least Norm Solution
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Find the smallest δ such that the optimal objective 
function value of the following linear subproblem 
is (1-γmin):
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and some geometric constraints (such as 
thickness constraints). Then find the least 
norm solution of the subproblem. 



Robust Optimization Simulation Results

• Whitcomb’s supercritical airfoil under 
the following design conditions:
– Target lift is 0.7
– Design Mach numbers: 

0.68, 0.71, 0.74, 0.77

• RAE2822 airfoil under Drela’s design 
conditions:
– Target lift is 0.733
– Design Mach numbers: 

0.68, 0.71, 0.74, 0.76



All x-coordinates are fixed, all y-coordinates (except the 
ones marked with black circles) are design variables.

Free-Form Airfoil Parameterization Using 
35 Cubic B-Spline Control Points



Unstructured Grid for Solving Navier-
Stokes Equations by FUN2D

• 18654 grid points, 55631 elements, 37308 faces 
•••• Eight computer nodes are used to run simulation
•••• Wall-time for generating a new airfoil: 80 minutes



Optimal Airfoil: Supercritical Airfoil

Thickness constraints at two spar locations 
and the maximum thickness location are used 
during the optimization.



Iteration History: Supercritical Airfoil (γmin=3%)

Possible reasons for jumps in drag history: large step length, 
nonsmooth shape modification, inaccurate linear predictions



Post Optimization Analysis: Supercritical Airfoil

Drag rise curve with data at 4 design points and 6 off-design points. 
Airfoil smoothing may yield a smoother drag rise curve.



Optimal Airfoil: RAE2822

Thickness constraints at two spar locations 
and the maximum thickness locations are 
used during the optimization.



Iteration History: RAE2822 Airfoil (γmin=3%)



Post Optimization Analysis: RAE2822

Drag rise curve with 4 design points and 6 off-design points.



Concluding Remarks

• By reducing the drag at the design conditions 
simultaneously and proportionally, the profile 
optimization method (POM) generates fairly 
smooth and realistic optimal airfoils without 
off-design performance degradation, even if 
free-form parameterization of airfoils is used.

• The computational cost of POM is the same 
as the multipoint optimization method.



Future Research Directions

• Incorporate airfoil smoothing in POM
• Develop more flexible drag reduction 

strategies while enforcing robust 
optimization policy

• Use more flexible thickness constraints 
that allow thickness locations to change 
during the optimization process

• Demonstrate the feasibility of POM for 
wing design
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